Introduction to Database
Systems

CSE 444

Lecture #6
Jan 22 2001

Announcements - |

¥Programming Assignment due on
Thu (1/25)

Using SQL in Applications

Reading: Section 7
(except 7.2, 7.4 - to be covered later)

Using SQL in Applications

38Business logic involves
RLanguage Issues

XIApplication code in a development language
(Java, C++, Visual Basic)

RIClient-Server communication

XApplication connects and “does work” at
database server

Language Issues

3 Data Type issues (Mapping of Types)

F8Reconcile Explicit iteration in
Programming Language with set-oriented
processing in SQL (Cursors)

#SQL generated on-the-fly (Dynamic SQL)

SQL Generated On-the-fly

¥ Static SQL without parameters:
RSelect * from Students
3 Static SQL with parameters
RSelect * from students where
Student_name = :sname
#Dynamic SQL
An arbitrary string that represents a SQL statement
Statement created at runtime

Processing SQL

F¥Key Steps
RParse SQL
[RValidate SQL against system catalog
Generate an “execution plan”
Optimize the execution plan
RExecute the plan

Implication for
SQL generated on-the-fly

38Static SQL

&Execution plan may be generated at
compilation time

38 Static SQL with parameters
AImost as above

#Dynamic SQL
ICompile time optimization not possible

Handling Dynamic SQL

FRuntime optimization
EICompile only once at runtime
BExecute multiple times
F¥Roughly:
RPrepare statement_name from
statement_variable
HExecute statement_name using arg [, arg]

Client Server
Communication

¥Embedded SQL
¥Call Level Interface

Embedded SQL

#$Embed SQL statements in a host language
program
[Variables from the application program can
be used in the SQL statement (host variables)
&Processed by a SQL Preprocessor
RUse cursors for multi-row output
[RIStructure to return errors (SQLCA)

Compiling Embedded SQL

#Embedded SQL submitted to precompiler
0ne Precompiler/language supported by DBMS
& Precompiler produces 2 files
&Source code + proprietary calls to DBMS routines
IDatabase Request Module (all SQL statements)
3 Next Steps

HSource code => object file, Linker links object files +
library routines

HIBinding utility generates executable SQL
3 Execute!

Embedded SQL -
Using Host Variables

Void simplelnsert() {

EXEC SQL BEGIN DECLARE SECTION;
char n[20], c[30]; /* product-name, company-name */
int poa; I* price, quantity */
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* get values for name, price and company somehow */

EXEC SQL INSERT INTO Product(pname, price, quantity, maker)
VALUES (:n, :p, :q, :C);
}

Embedded SQL -

Single-Row Select Statements
int getPrice(char *name) {

EXEC SQL BEGIN DECLARE SECTION;
char n[20];
int p;
char SQLSTATEL6];

EXEC SQL END DECLARE SECTION;

srepy(n, name); /* copy nameto local variable */

EXEC SQL SELECT price INTO :p
FROM Product
WHERE Product.name = :n;
return p;
}

Embedded SQL - Cursors

void product2XML() {
EXEC SQL BEGIN DECLARE SECTION;
char n[20], c[30];

intp, g;
char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE crs CURSOR FOR
SELECT pname, price, quantity, maker
FROM Product;

EXEC SQL OPEN crs;

Embedded SQL - Cursors (2)

printf(" <allProducts>\n");

while (1) {
EXEC SQL FETCH FROM crs INTO :n, :p, :q, :C;
if (NO_MORE_TUPLES) break;
printf(* <product>\n");

printf(* <name> %s </name>\n", n);
printf(* <price> %d </price>\n", p);
printf(* <quantity> %d </quantity>\n", q);

printf(* <maker> %s </maker>\n", c);

printf(* </product>\n");

}
EXECT SQL CLOSE crs;
printf("“ </allProducts>\n");

Embedded SQL -
Dynamic SQL

Void someQuery() {

EXEC SQL BEGIN DECLARE SECTION;

char *command="UPDATE Product SET quantity=quantity+1
WHERE name="gizmo”

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE myquery FROM :command;

EXEC SQL EXECUTE myquery;
¥

myquery = a SQL variable, does not need to be prefixed by “:"
17

Call Level Interface (CLI)

3 Provides a library of DBMS functions
AlLike string, 1/0,..

3 Application calls CLI routines on the local
system
R Calls are sent to DBMS for processing

#¥What's different from embedded SQL?
BIEmbedded SQL has undocumented calls

Using CLI

FApplication calls a CLI function to connect
to DBMS

3 Application builds a SQL statement in
buffer

3 Calls CLI functions to send the statement
to DBMS

#Calls CLI functions to get result rows
#Disconnect from DBMS

ODBC as CLI

3 Standardize DBMS function calls

3 Helps applications access multiple DBMS
EUsing same source without recompiling/relinking
ESimultaneously

¥ Needs libraries (database drivers) on clients

&For example, on Windows, different DLL for each
DBMS

38 Defines a standard SQL grammar
&Driver may do conversion

ODBC as CLI (2)

3 Driver manager to ease the job of
multiple connections
RUse connection handles
¥Supports “large” number of DBMS
features without requiring support for all
RISQLGetInfo and SQLGetFunctions
#¥Insulate applications from DBMS changes
BUpgrade drivers

ODBC Details

#SQLDriverConnect -- opens a connection

8 SQLExecDirect -- executes a sql statement

$SQLBiIndCol -- binds a program variable to a
column in the result of a SQL statement

SQLFetch -- fetches the next row in the current
result set

¥ SQLMoreResults -- returns true if more result
sets are yet to be consumed (e.g., useful for a
batch of queries)

#SQLError -- returns information about the last
error (for the specified connection)

Stored Procedures

3 Execute an application program at server
#DBMS Specific language
HIPL/SQL (Oracle)
EIT-SQL stored Procedure (Microsoft)
¥ Pioneered by Sybase
Advantage
RReduce data transmission

SQL - More to Come

FYet to come
[RICreate base and temporary tables
R Constraints and Triggers
(RSecurity
R Transactions

FWill be covered after Database Schema
Design

Data Definition in SQL

So far, SQL operations on the data.
Data Manipulation Language (DML)

Data definition: defining the schema.
Data Definition Language (DDL)

« Define datatypes
¢ Create/delete/modify tables
« Create/delete indexes

Data Types in SQL

* Character strings (fixed of varying length)
« Bit strings (fixed or varying length)

* Integer (SHORTINT)

* Foating point

* Dates and times

Domains will be used in table declarations.
To reuse domains:

CREATE DOMAIN address AS VARCHAR(55)

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INTEGER,

age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

Temporary Tables

$CREATE LOCAL
TEMPORARY TABLE
Temp_Person (..)

38 Populate using
INSERT INTO

3 Deleted at the end of
every “transaction”

$CREATE GLOBAL
TEMPORARY TABLE
Temp_Person (..)

¥ Populate using
INSERT INTO

38 Persists for the
connection

Deleting or Modifying a
Table

DROP TABLE Person;
DELETE FROM Person

/*What' s the difference?*/
Altering:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Default Values

The default of defaults: NULL

Specifying default values:
CREATE TABLE Person(

name VARCHAR(30),

social-security-number
age

city

gender

birthdate

INTEGER,

SHORTINT DEFAULT 100,
VARCHAR(30) DEFAULT “Settle’,
CHAR(1) DEFAULT “7,

DATE)

Database Schema Design

Today’s Reading:

Sec 2 (except 2.1 and ODL
discussions) and
Sec 3.1- 3.4 (except 3.1)

Database Design

#$Why do we need it?

Agree on structure of the database before
deciding on a particular implementation.

3 Consider issues such as:
RWhat entities to model
[IHow entities are related
EBWhat constraints exist in the domain
RHow to achieve good designs

Overview of Database
Design

& Conceptual design: (ER Model is used at this stage.)
ER Diagram
= What are the entities and relationships in the enterprise?
= What are the integrity constraints or business rules that hold?
Map an ER diagram into a relational schema
3 Schema Refinement (Normalization):
RICheck relational schema for redundancies and related
anomalies.
3 Physical Design:
&IDetermine physical structures

ER Model
Basics

B Entity: Real-world object distinguishable from
other objects. An entity is described (in DB)
using a set of attributes.

3B Entity Set: A collection of similar entities. E.g.,
all employees.

=@ All entities in an entity set have the same set of
attributes.

Each entity set has a k@ ‘

Each attribute has a domain.

ER Model Basics
S

@ super- subor-
@ visor dinate
~ T~
Reports_To.
Employees Departments

3 Relationship: Association among two or more
entities. E.g., Ed works in Pharmacy department.
RCan have attributes to describe how entities are related

3 Relationship Set: Collection of similar relationships.

Workers

35

What is a Relationship ?

¥A mathematical definition:

[Rlif A, B are sets, then a relation R is a subset
of AxB

8:8A={11213}I B={alblcld}l
R= {(1ra)r (1IC)I (3Ib)} A=

- makes is a subset of Product X
Company:

Multiplicity of E/R
Relationships

$one-one: , Q_.

F¥many-one

CIDLICID)
//
@" eﬁ»

F¥many-many

—O
~O

Roles in Relationships

What if we need an entity set twice in one relationship?

Product

Purchase Store

salesperson buyer

Person

Multi-way Relationships

How do we model a purchase relationship between buyers,
products and stores?

Can still model as amathematical set (how ?) "

Attributes on Relationships

date
Product

Purchase Store

Person

40

price

Crame) Coaegy)

makes Company
Product
buys

employs

Person
CONREDPY

Converting Multi-way
Relationships to Binary

date
/ ProductOf Product
Purchase
StoreOf Store
Moral:
Find anice way
to say things. BuyerOf Person

42

Recap: Conceptual Design

38 Conceptual design follows requirements
analysis:

@Yields a high-level description of data to be stored
$ER model popular for conceptual design

@Constructs are expressive, close to the way people
think about their applications.

¥ Basic constructs: entities, relationships, and
attributes (of entities and relationships).

¥Note: There are many variations on ER model.

Recap: Conceptual Design
Using the ER Model

3 Design choices:

@Should a concept be modeled as an entity or an
attribute?

@Should a concept be modeled as an entity or a
relationship?

wldentifying relationships: Binary or ternary?

44

Design Choices:
Entity vs. Attribute

8 Should address be an attribute of Employees or an
entity (connected to Employees by a relationship)?

3 Depends upon the use we want to make of address
information, and the semantics of the data:

XIIf we have several addresses per employee, address

must be an entity (since attributes cannot be set-
valued).

[XIIf the structure (city, street, etc.) is important, e.g., we
want to retrieve employees in a given city, address must

be modeled as an entity (since attribute values are
atomic).

45

Design Choice
Entity vs. Relationship

& First ER diagram OK if (since> @oudged
a manager gets a @ T

separate discretionary | Gudgel

budget for each dept. W
What if a manager gets

a discretionary budget

that covers a// Came> (@name)
managed depts? (ssn> “@

s ket
dept managed by the
manager.

Misleading: suggests dbudget ~ @2ptnum>

tied to managed dept. a7

Entity vs. Attribute
(Contd.)

=
3 Works_In2 does not Cs \ .®‘ Guagd)
allow an employee to N
work in a department *

for two or more periods.
88 Similar to the problem

of wanting to record

several addresses for an

employee: we want to @

record several values of
the descriptive attributes

for each instance of this

relationship. Cirom>—[Duration}- 1o >

46

Comments on ER Models

¥ ER design is subjective. There are often many
ways to model a given scenario! Analyzing
alternatives can be tricky, especially for a large
enterprise. Common choices include:
Entity vs. attribute, entity vs. relationship, binary or n-

ary relationship, roles, etc.

¥ Need to model constraints on data

HTo follow ..

48

